Update and preliminary request for run 17 diffractive EM-jet A_{N}

Xilin Liang
Mar. 15, 2023

Outline

- Update on studying the BBC cuts with simulation
- Preliminary results (plots) for run 17 diffractive EM-jet A_{N}

Simulation

- Goal: study the validity for selecting diffractive EM-jet using the BBC cuts.
- Simulation set up: Pythia 8 simulation, hard QCD process
- Cuts for simulation:

1. Distinguish between diffractive process and non-diffractive process (directly from Pythia 8 output)
2. Cut on west side proton track (proton track $5.5<\eta<7$)

- There are no BBC detector level simulation, so investigate on the final state particle within the BBC coverage
- According to Akio, the BBC ADC sum can roughly relate to number of charge particle hitting the BBC area.

Particle level simulation to study west BBC cuts

- Consider events only in particle level simulation.
- Investigate the outgoing particle distribution in the small BBC region.
- Small BBC west: $3.5<\eta<4.5$
- Count the number of charged final state particles within such range.
- From the plots, lower number of charged particles for diffractive events is preferred. -> Choosing west small BBC cut with low threshold is OK.
n charged particle in west small $B B C$ range (sig)

$\times 10^{3} \mathrm{n}$ charged particles in west small BBC range (bkg)

Particle level simulation to study east BBC cuts

- Consider events only in particle level simulation.
- Investigate the outgoing particle distribution in the small BBC region.
- Small BBC east: $-4.5<\eta<-3.5$
- Count the number of charged final state particles within such range.
- From the plots, lower number of charged particles for diffractive events is preferred. -> Choosing east small BBC cut with low threshold is OK.
n charged particle in east small BBC range (sig)

Check small BBC west ADC vs small BBC east ADC

- Consider $E_{\text {sum }}<260 \mathrm{GeV}$ as signal and $E_{\text {sum }}>260 \mathrm{GeV}$ as background
- $E_{\text {sum }}$: sum of FMS EM-jet energyand west RP track energy
- Plot the signal / background ratio
- Consider cut on small-BBC west $A D C<450$ and small $B B C$ east $A D C>220$
- East small BBC cut seems not figuring out good cuts.
small BBC west ADC vs small BBC east ADC (signal)

small BBC west ADC vs small BBC east ADC (bly)

ratio of small east vs west BBC ADC sum (signal / pile-up)

Investigate the A_{N} for different west BBC cut

- We try on different west $B B C$ cut to see if the results are so converged.
- List of west BBC max threshold: 350, 400, 450, 500, 550
- Use all photon multiplicity A_{N} as example.
- Only A_{N} central value and statistical uncertainty shown in the plots.

Percentage difference for changing small west

 BBC ADC cutCalculate each term by result difference fraction when changing the cuts:

$$
\text { difference }=\frac{\left|A_{N, \text { change cut }}-A_{N, \text { origin }}\right|}{\left|A_{N, \text { origin }}\right|}
$$

- Reference cut: small west BBC ADC sum < 450
- Blue beam

$\left\|x_{\mathrm{F}}\right\|$ range	small west BBC cut 350	small west BBC cut 400	small west BBC cut 500	small west BBC cut 550
$0.1-0.15$	16%	2%	30%	23%
$0.15-0.2$	82%	15%	21%	78%
$0.2-0.25$	27%	21%	3%	11%
$0.25-0.3$	38%	9%	33%	28%
$0.3-0.45$	25%	11%	4%	23%

- Yellow beam

$\left\|x_{F}\right\|$ range	small west BBC cut 350	small west BBC cut 400	small west BBC cut 500	small west BBC cut 550
$0.1-0.15$	6%	20%	6%	40%
$0.15-0.2$	88%	111%	12%	41%
$0.2-0.25$	74%	41%	1%	30%
$0.25-0.3$	175%	85%	73%	38%
$0.3-0.45$	28%	33%	5%	23%

Event selection and corrections

- FMS
- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking
- Jet reconstruction: StJetMaker2015, Anti-kT, R<0.7, FMS point energy $>2 \mathrm{GeV}, \boldsymbol{p}_{\boldsymbol{T}}>\mathbf{2 G e V} / \mathrm{c}$, FMS point as input.
- Apply energy correction.
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)

Corrections:

Energy correction and
Underlying Event correction

- Vertex $|z|<80 \mathrm{~cm}$
- Roman Pot and Diffractive process:
- Acceptable cases: (in next slide)

1. Only 1 west RP track + no east RP track
2. Only 1 east RP track + only 1 west RP track

- RP track must be good track:
a) Each track hits 7 or 8 planes
b) $-0.5<p_{x}<0.3[\mathrm{GeV} / \mathrm{c}], 0.25<\left|p_{y}\right|<0.4[\mathrm{GeV} / \mathrm{c}]$
- Sum of west RP track energy and all EM Jet energy

X_{F}	E sum Cut
$0.1-0.15$	$E_{\text {sum }}<265 \mathrm{GeV}$
$0.15-0.2$	$\mathrm{E}_{\text {sum }}<280 \mathrm{GeV}$
$0.2-0.25$	$\mathrm{E}_{\text {sum }}<295 \mathrm{GeV}$
$0.25-0.3$	$\mathrm{E}_{\text {sum }}<305 \mathrm{GeV}$
$0.3-0.35$	$\mathrm{E}_{\text {sum }}<315 \mathrm{GeV}$
$0.35-0.4$	$\mathrm{E}_{\text {sum }}<330 \mathrm{GeV}$
$0.4-0.45$	$\mathrm{E}_{\text {sum }}<340 \mathrm{GeV}$

- BBC ADC sum cuts:
- West Small BBC ADC sum < 450

Systematic uncertainty (EM-jet with all photon multiplicity)

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
- Energy sum cut: change the energy sum cut to check the uncertainty.
- Small west BBC ADC sum cut: change 450 to 400 Calculate each systematic uncertainty by result difference fraction when changing the cuts:

$$
\text { uncertainty }=\frac{\left|A_{N, \text { change cut }}-A_{N, \text { origin }}\right|}{\left|A_{N, \text { origin }}\right|}
$$

x_{F}	E sum Cut original	E sum Cut systematic
0.1-0.15	$\mathrm{E}_{\text {sum }}<265 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<255 \mathrm{GeV}$
0.15-0.2	$\mathrm{E}_{\text {sum }}<280 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<265 \mathrm{GeV}$
0.2-0.25	$\mathrm{E}_{\text {sum }}<295 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<275 \mathrm{GeV}$
0.25-0.3	$\mathrm{E}_{\text {sum }}<305 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<290 \mathrm{GeV}$
0.3-0.35	$\mathrm{E}_{\text {sum }}<315 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<300 \mathrm{GeV}$
0.35-0.4	$\mathrm{E}_{\text {sum }}<330 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<310 \mathrm{GeV}$
0.4-0.45	$\mathrm{E}_{\text {sum }}<340 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<320 \mathrm{GeV}$

X_{F} range	E_sum	Small BBC	Summary	
$0.1-0.15$	5%	2%	5%	
$0.15-0.2$	3%	15%	15%	
$0.2-0.25$	8%	21%	22%	
$0.25-0.3$	15%	9%	17%	
$0.3-0.45$	9%	11%	14%	
	Yellow beam			
	E_sum	Small BBC	Summary	
X range	S.			
$0.1-0.15$	15%	20%	25%	
$0.15-0.2$	49%	111%	121%	
$0.2-0.25$	3%	41%	41%	
$0.25-0.3$	63%	85%	106%	
$0.3-0.45$	34%	33%	48%	

Run 17 FMS diffractive EM-jet A_{N} results

- EM-jet with all photon multiplicity
- Cross ratio method is applied to extract the A_{N}.
- Consider only $5 \mathrm{x}_{\mathrm{F}}$ ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.45]
- They seems to get A_{N} close to 0 at low X_{F} ranges, but A_{N} greater than 0 at high x_{F} ranges.
- The sign is mostly positive, different from run 15 results.
- Preliminary request plot 1

Run 17 FMS diffractive EM-jet A_{N} results

- EM-jet with 1 or $\mathbf{2}$ photon multiplicity

- Cross ratio method is applied to extract the A_{N}.
- Still consider only $5 \mathrm{x}_{\mathrm{F}}$ ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [$0.25,0.3$], [0.3, 0.45]
- The larger A_{N} values are observed for EM-jet with 1 or 2 photon multiplicity. They are 2.5σ to be non-zero.
- Preliminary request plot 2

Systematic uncertainty (EM-jet with 1 or 2 photon multiplicity)

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
- Energy sum cut: change the energy sum cut to check the uncertainty.
- Small BBC ADC sum cut: change 450 to 400

Calculate each systematic uncertainty by result difference fraction when changing the cuts:

$$
\text { uncertainty }=\frac{\left|A_{N, \text { change cut }}-A_{N, \text { origin }}\right|}{\left|A_{N, \text { origin }}\right|}
$$

X_{F}	E sum Cut original	E sum Cut systematic
$0.1-0.15$	$\mathrm{E}_{\text {sum }}<265 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<255 \mathrm{GeV}$
$0.15-0.2$	$\mathrm{E}_{\text {sum }}<280 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<265 \mathrm{GeV}$
$0.2-0.25$	$\mathrm{E}_{\text {sum }}<295 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<275 \mathrm{GeV}$
$0.25-0.3$	$\mathrm{E}_{\text {sum }}<305 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<290 \mathrm{GeV}$
$0.3-0.35$	$\mathrm{E}_{\text {sum }}<315 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<300 \mathrm{GeV}$
$0.35-0.4$	$\mathrm{E}_{\text {sum }}<330 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<310 \mathrm{GeV}$
$0.4-0.45 \mathrm{E}_{\text {sum }}<340 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<320 \mathrm{GeV}$	

	X_{F} range	E_sum	Small BBC	
$0.1-0.15$	91%	663%	Summary	
$0.15-0.2$	2%	6%	6%	
$0.2-0.25$	1%	2%	2%	
$0.25-0.3$	9%	94%	94%	
$0.3-0.45$	6%	11%	12%	
	Yellow beam			
X	range	E_sum	Small BBC	
$0.1-0.15$	11%	7%	Summary	
$0.15-0.2$	8%	1%	13%	
$0.2-0.25$	10%	19%	22%	
$0.25-0.3$	52%	64%	82%	
$0.3-0.45$	31%	5%	31%	

Comparison between run 17 FMS inclusive and diffractive EM-jet A_{N} results

- We compare run 17 FMS inclusive (done by Bishnu) and diffractive 1 or 2 photon multiplicity EM-jet A_{N} results.
- Both results are A_{N} results as the function of x_{F} (with exactly same x_{F} bins [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.35])
- Preliminary request plot 3

Conclusion

- Particle level simulation shows that the BBC cuts with low threshold can help to maximize the diffractive events.
- Diffractive EM-jet A_{N} are close to zero at $\sqrt{s}=510 \mathrm{GeV}$.
- The diffractive process might not contribute to large A_{N} for inclusive process.
- Outlook:
- DIS 2023 presentation is ready for review. When preliminary requests for the plots are obtained, we will update to the website.

Back up

E sum cuts based on different X_{F} ranges

- Apply E sum cuts based on signal peak and pile-up peak splitting position.

X_{F}	E sum Cut
$0.1-0.15$	$E_{\text {sum }}<265 \mathrm{GeV}$
$0.15-0.2$	$\mathrm{E}_{\text {sum }}<280 \mathrm{GeV}$
$0.2-0.25$	$\mathrm{E}_{\text {sum }}<295 \mathrm{GeV}$
$0.25-0.3$	$\mathrm{E}_{\text {sum }}<305 \mathrm{GeV}$
$0.3-0.35$	$\mathrm{E}_{\text {sum }}<315 \mathrm{GeV}$
$0.35-0.4$	$\mathrm{E}_{\text {sum }}<330 \mathrm{GeV}$
$0.4-0.45$	$\mathrm{E}_{\text {sum }}<340 \mathrm{GeV}$

Polarization uncertainty

- $\sigma\left(P_{\text {set }}\right)=P_{\text {set }} \cdot \frac{\sigma(\text { scale })}{P} \oplus \sigma_{\text {set }}($ fill to fill $) \oplus P_{\text {set }} \cdot \frac{\sigma(\text { profile })}{P}$
- $\frac{\sigma(\text { scale })}{P}=1.1 \%^{[1]}$
- $\frac{\sigma(\text { profile })}{P}=\frac{2.2 \%}{\sqrt{M}}=0.17 \%^{[1]} \quad \mathrm{M}=179, \mathrm{~N}=190$
- $\sigma^{2}{ }_{\text {set }}($ fill to fill $)=\left(1-\frac{M}{N}\right) \frac{\sum_{\text {fill }} L_{\text {fill }}^{2} \sigma^{2}\left(P_{\text {fill }}\right)}{\left(\sum_{\text {fill }} L_{\text {fill }}\right)^{2}}$
- $\sigma_{\text {set }}($ fill to fill $)=0.06 \%$
- $\sigma\left(P_{\text {fill }}\right)=\sigma\left(P_{0}\right) \oplus \sigma\left(\frac{d P}{d t}\right)\left(\frac{\sum_{\text {run }} t_{r u n} L_{r u n}}{L_{\text {fill }}}-t_{0}\right) \oplus \frac{\sigma(\text { fill to fill })}{P} P_{\text {fill }}{ }^{[2]}$
- so $\sigma\left(P_{\text {set }}\right)=1.1 \%$
[1] W. B. Schmidke, RHIC polarization for Runs 9-17
[2] Z. Chang Example calculation of fill-to-fill polarization uncertainties

Previous study

- Mar. 8 PWG meeting

Roman Pot track update

- We discuss with Tomas Truhlar (RP group, LFSUPC PWG), who applies run 17 pp 510 GeV with RP:

1. It's better to apply cut on: RP track hits 3 out of 4 planes for each RP package. -> decide to change my RP track cut on hitting at least 7 RP planes.
2. $R P$ track momentum are still not measuring well.
3. Detector level simulation for RP for run 17 is still developing. They will apply the simulation to study the detector efficiency.

Simulation for diffractive processes

- Consider hard diffraction in Pythia8 simulation.
- Only in particle level simulation. The detector level simulation is still developing by Roman Pot group.
- RP track momentum for data look not match well with particle level simulation.

Particle level proton P sorted by west side

Check small BBC west ADC vs small BBC east ADC

Was presented in Mar. 8 PWG meeting. East BBC cut is not used!

- Consider $E_{\text {sum }}<260 \mathrm{GeV}$ as signal and $E_{\text {sum }}>260 \mathrm{GeV}$ as background
- $E_{\text {sum }}$: sum of FMS EM-jet energy and west RP track energy
- Plot the signal / background ratio
- Consider cut on small BBC west ADC < 450 and small BBC east ADC > 220
small BBC west ADC vs small BBC east ADC (signal)

small $B B C$ west $A D C$ vs small $B B C$ east $A D C$ (big)

ratio of small east vs west BBC ADC sum (signal / pile-up)

Investigate the A_{N} for different west BBC cut

- We try on different west BBC cut to see if the results are so converged.
- List of west BBC max threshold: 350, 400, 450, 500, 550
- Fix east BBC cut: East small BBC sum > 220
- Use all photon multiplicity A_{N} as example.
- Only A_{N} central value and statistical uncertainty shown in the plots.

